Relative growth of the partial sums of certain random Fibonacci-like sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Integrity of Certain Fibonacci Sums

[n is an arbitrary natural number, r is an arbitrary (nonzero) real quantity) gives & positive integer k. Since both r and k turn out to be Fibonacci number ratios, the results established in this paper can be viewed as a particular kind of Fibonacci identities that are believed to be new [see (4.7) and (4.8)]. Throughout the paper we shall make use of the following properties of the Fibonacci ...

متن کامل

Certain General Binomial-fibonacci Sums

Numerous writers appear to have been fascinated by the many interesting summation identitites involving the Fibonacci and related Lucas numbers. Various types of formulas are discussed and various methods are used. Some involve binomial coefficients [2 ] , [4 ] . Generating function methods are used in [2] and [5] and higher powers appear in [6] . Combinations of these or other approaches appea...

متن کامل

Growth and Decay of Random Fibonacci Sequences

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive...

متن کامل

The Asymptotic Growth Rate of Random Fibonacci Type Sequences Ii

In this paper, we use ergodic theory to compute the aysmptotic growth rate of a family of random Fibonacci type sequences. This extends the result in [2]. We also prove some Lochs-type results regarding the effectiveness of various number theoretic expansions.

متن کامل

The Asymptotic Growth Rate of Random Fibonacci Type Sequences

Estimating the growth rate of random Fibonacci-type sequences is both challenging and fascinating. In this paper, by using ergodic theory, we prove a new result in this area. Let a denote an infinite sequence of natural numbers {a1, a2, · · · } and define a random Fibonaccitype sequence by f−1 = 0, f0 = 1, a0 = 0, and fk = 2fk−1 + 2fk−2 for k ≥ 1. Then, for almost all such infinite sequences a,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Difference Equations and Applications

سال: 2017

ISSN: 1023-6198,1563-5120

DOI: 10.1080/10236198.2017.1378353